| | DAYBREAK | G-109 BE | ACH BACK | ВЕ | | | | |-----------------------------------|----------|----------|----------|--------|----|----|--| | Analyte | RESULT | DL | RL | RESULT | DL | RL | | | Dioxins/Furans (pg/g) | | | | | | | | | 1,2,3,4,6,7,8-Hepta CDD | 0.300 | 0.0950 | 1.00 | | | | | | 1,2,3,4,6,7,8-Hepta CDF | ND | 0.0760 | 1.00 | | | | | | 1,2,3,4,7,8,9-Hepta CDF | ND | 0.0757 | 1.00 | | | | | | 1,2,3,4,7,8-Hexa CDD | ND | 0.108 | 1.00 | | | | | | 1,2,3,4,7,8-Hexa CDF | ND | 0.0891 | 1.00 | | | | | | 1,2,3,6,7,8-Hexa CDD | ND | 0.113 | 1.00 | | | | | | 1,2,3,6,7,8-Hexa CDF | ND | 0.0929 | 1.00 | | | | | | 1,2,3,7,8,9-Hexa CDD | ND | 0.113 | 1.00 | | | | | | 1,2,3,7,8,9-Hexa CDF | ND | 0.0898 | 1.00 | | | | | | 1,2,3,7,8-Penta CDD | ND | 0.0948 | 1.00 | | | | | | 1,2,3,7,8-Penta CDF | ND | 0.0948 | 1.00 | | | | | | 2,3,4,6,7,8-Hexa CDF | ND | 0.0842 | 1.00 | | | | | | 2,3,4,7,8-Penta CDF | ND | 0.0923 | 1.00 | | | | | | 2,3,7,8-Tetra CDD | ND | 0.109 | 0.200 | | | | | | 2,3,7,8-Tetra CDF | ND | 0.101 | 0.200 | | | | | | Octa CDD | 1.45 | 0.199 | 2.00 | | | | | | Octa CDF | ND | 0.200 | 2.00 | | | | | | Total Hepta CDD | 0.564 | 0.0950 | 1.00 | | | | | | Total Hepta CDF | 0.0901 | 0.0758 | 1.00 | | | | | | Total Hexa CDD | 0.128 | 0.112 | 1.00 | | | | | | Total Hexa CDF | ND | 0.0889 | 1.00 | | | | | | Total Penta CDD | ND | 0.0948 | 1.00 | | | | | | Total Penta CDF | ND | 0.0936 | 1.00 | | | | | | Total Tetra CDD | ND | 0.109 | 0.200 | | | | | | Total Tetra CDF | ND | 0.101 | 0.200 | | | | | | Polychlorinated Biphenyls (ug/kg) | | | | | | | | | Aroclor 1016 | ND | | 10.2 | | | | | | Aroclor 1221 | ND | | 10.2 | | | | | | Aroclor 1232 | ND | | 10.2 | | | | | | Aroclor 1242 | ND | | 10.2 | | | | | | Aroclor 1248 | ND | | 10.2 | | | | | | Aroclor 1254 | ND | | 10.2 | | | | | | Aroclor 1260 | ND | | 10.2 | | | | | | Organochlorine Pesticides (ug/kg) | | | | | | | | | Aldrin | ND | | 4.42 | | | | | | alpha-BHC | ND | | 4.42 | | | | | | beta-BHC | ND | | 4.42 | | | | | | delta-BHC | ND | | 4.42 | | | | | | gamma-BHC (Lindane) | ND | | 4.42 | | | | | | cis-Chlordane | ND | | 4.42 | | | | | | trans-Chlordane | ND | | 4.42 | | | | | | 4,4'-DDD | ND | | 4.42 | | | | | | 4,4'-DDE | ND | | 4.42 | | | | | | 4,4'-DDT | ND | | 4.42 | | | | | | Dieldrin | ND | | 4.42 |
 | | |--|----------|----------|------|-------|--| | Endosulfan I | ND | | 4.42 |
 | | | Endosulfan II | ND | | 4.42 |
 | | | Endosulfan sulfate | ND | | 4.42 |
 | | | Endrin | ND | | 4.42 |
 | | | Endrin Aldehyde | ND | | 4.42 |
 | | | Endrin ketone | ND | | 4.42 | | | | Heptachlor | ND | | 4.42 |
 | | | Heptachlor epoxide | ND | | 4.42 |
 | | | Methoxychlor | ND | | 13.3 |
 | | | Chlordane (Technical) | ND | | 133 |
 | | | Toxaphene (Total) | ND | | 133 |
 | | | Semivolatile Organic Compounds (ug/kg) | NB | | 133 | | | | Acenaphthene | ND | | 2.74 |
 | | | Acenaphthylene | ND | | 2.74 |
 | | | Anthracene | ND | | 2.74 |
 | | | Benz(a)anthracene | ND | | 2.74 |
 | | | Benzo(a)pyrene | ND | | 4.1 |
 | | | Benzo(b)fluoranthene | ND | | 4.1 |
 | | | Benzo(k)fluoranthene | ND | | 4.1 |
 | | | Benzo(g,h,i)perylene | ND | | 2.74 |
 | | | Chrysene | ND | | 2.74 |
 | | | Dibenz(a,h)anthracene | ND | | 2.74 |
 | | | Fluoranthene | ND | | 2.74 |
 | | | Fluorene | ND | | 2.74 |
 | | | Indeno(1,2,3-cd)pyrene | ND | | 2.74 |
 | | | 1-Methylnaphthalene | ND | | 5.46 |
 | | | 2-Methylnaphthalene | ND | | 5.46 |
 | | | Naphthalene | ND | | 5.46 |
 | | | Phenanthrene | ND | | 2.74 |
 | | | Pyrene | ND | | 2.74 |
 | | | Carbazole | ND | | 4.10 |
 | | | Dibenzofuran | ND | | 2.74 |
 | | | 4-Chloro-3-methylphenol | ND | | 27.4 |
 | | | 2-Chlorophenol | ND | | 13.6 |
 | | | 2,4-Dichlorophenol | ND | | 13.6 |
 | | | 2,4-Dimethylphenol | ND | | 13.6 |
 | | | 2,4-Dinitrophenol | ND | | 68.3 |
 | | | 4,6-Dinitro-2-methylphenol | ND | | 68.3 |
 | | | 2-Methylphenol | ND | | 6.83 |
 | | | 3+4-Methylphenol(s) | ND | | 6.83 |
 | | | 2-Nitrophenol | ND | | 27.4 |
 | | | 4-Nitrophenol | ND | | 27.4 |
 | | | Pentachlorophenol (PCP) | ND | | 27.4 |
 | | | Phenol | ND | | 5.46 |
 | | | 2,3,4,6-Tetrachlorophenol | + | - | |
+ | | | [2,3,4,0-retractionophenor | ND | | 13.6 |
 | | | 2,4,5-Trichlorophenol | ND |
13.6 | |
l l | | |------------------------------|--------|-----------|------|----------|--| | 2,4,6-Trichlorophenol | ND |
13.6 | |
 | | | Bis(2-ethylhexyl)phthalate | ND |
41 | |
 | | | Butyl benzyl phthalate | ND |
27.4 | |
 | | | Diethylphthalate | ND |
27.4 | |
 | | | Dimethylphthalate | ND |
27.4 | |
 | | | Di-n-butylphthalate | ND |
27.4 | |
 | | | Di-n-octyl phthalate | ND |
27.4 | |
 | | | N-Nitrosodimethylamine | ND |
6.83 | |
 | | | N-Nitroso-di-n-propylamine | ND |
6.83 | |
 | | | N-Nitrosodiphenylamine | ND |
6.83 | |
 | | | Bis(2-Chloroethoxy) methane | ND |
6.83 | |
 | | | Bis(2-Chloroethyl) ether | ND |
6.83 | |
 | | | Bis(2-Chloroisopropyl) ether | ND |
6.83 | |
 | | | Hexachlorobenzene | ND |
2.74 | |
 | | | Hexachlorobutadiene | ND |
6.83 | |
 | | | Hexachlorocyclopentadiene | ND |
13.6 | |
 | | | Hexachloroethane | ND |
6.83 | |
 | | | 2-Chloronaphthalene | ND |
2.74 | |
 | | | 1,2-Dichlorobenzene | ND |
6.83 | |
 | | | 1,3-Dichlorobenzene | ND |
6.83 | |
 | | | 1,4-Dichlorobenzene | ND |
6.83 | |
 | | | 1,2,4-Trichlorobenzene | ND |
6.83 | |
 | | | 4-Bromophenyl phenyl ether | ND |
6.83 | |
 | | | 4-Chlorophenyl phenyl ether | ND |
6.83 | |
 | | | Aniline | ND |
13.6 | |
 | | | 4-Chloroaniline | ND |
6.83 | |
 | | | 2-Nitroaniline | ND |
54.6 | |
 | | | 3-Nitroaniline | ND |
54.6 | |
 | | | 4-Nitroaniline | ND |
54.6 | |
 | | | Nitrobenzene | ND |
27.4 | |
 | | | 2,4-Dinitrotoluene | ND |
27.4 | |
 | | | 2,6-Dinitrotoluene | ND |
27.4 | |
 | | | Benzoic acid | ND |
341 | |
 | | | Benzyl alcohol | ND |
13.6 | |
 | | | Isophorone | ND |
6.83 | |
 | | | Azobenzene (1,2-DPH) | ND |
6.83 | |
 | | | Bis(2-Ethylhexyl) adipate | ND |
68.3 | |
 | | | 3,3'-Dichlorobenzidine | ND |
27.4 | |
 | | | 1,2-Dinitrobenzene | ND |
68.3 | |
 | | | 1,3-Dinitrobenzene | ND |
68.3 | |
 | | | 1,4-Dinitrobenzene | ND |
68.3 | |
 | | | Pyridine | ND |
13.6 | |
 | | | Total Metals (mg/kg) | FO 6** | 4.03 | 4 20 | 1.00 | | | Arsenic | 59.0** |
1.02 | 4.29 |
1.02 | | | Barium | 74.4 |
1.02 | |
 | | | Cadmium | ND |
0.205 | |
 | | | Chromium | 9.69 |
4.09 | |
 | | |-----------|------|------------|--|------|--| | Copper | |
 | |
 | | | Lead | 3.47 |
0.205 | |
 | | | Manganese | |
 | |
 | | | Mercury | ND |
0.0818 | |
 | | | Selenium | ND |
2.05 | |
 | | | Silver | ND |
0.205 | |
 | | | Zinc | |
 | |
 | | Notes: | BE | 3-C Cor | np | ВЕ | B-N Cor | np | | BB- | Γotal C | omp | | Import Criteria | |--------|---------|----|--------|---------|----|----------|--------|---------|------|---|-----------------| | RESULT | DL | RL | RESULT | DL | RL | | RESULT | DL | RL | | • | 2.5 | | | | | | | | | | | | | 2.5 | | | | | | | | | | | | | 2.5 | | | | | | | | | | | | | 2.5 | | | | | | | | | | | | | 2.5 | | | | | | | | | | | | | 2.5 | | | | | | | | | | | | | 2.5 | | | | | | | | | | | | | 2.5 | | | | | | | | | | | | | 2.5 | | | | | | | | | - | | | | 2.5 | 2.5 | | | | | | | | | | | | | 2.5 | | | | | | | | | | | | | 2.5 | | | | | | | | | | | | | 0.5 | | | | | | | | | | | | | 0.5 | | | | | | | | | | | | | 5 | | | | | | | | | | | | | 5 | ND | | 9.19 | | 10 | | | | | | | | | ND | | 9.19 | | 10 | | | | | | | | | ND | | 9.19 | | 10 | | | | | | | | | ND | | 9.19 | | 10 | | | | | | | | | ND | | 9.19 | | 10 | | | | | | | | | ND | | 9.19 | | 10 | | | | | | | | | ND | | 9.19 | | 10 | | | | | | | | | | | | | - | | | | | | | | | ND | | 1.8 | | 5 | | | | | | | | | ND | | 1.8 | - | 5 | | | | | | | | | ND | | 1.8 | _ | 5 | | | | | | | | \vdash | ND | | 1.8 | | 5 | | | | | | | | | ND | | 1.8 | | 5
 | | | | | | | | | ND | | 1.8 | | 100 | ND | | 1.8 | | 100 | | | | | | | | | ND | | 1.8 | _ | 5 | | | | | | | | | ND | | 1.8 | | <u> </u> | | | | | | | | | ND | | 1.8 | | 5 | | 1 | T | | | | | | | | |------|---|---|------|--|----|----------|----------|-------| |
 | | |
 | | ND |
1.8 | | 5 | |
 | | |
 | | ND |
1.8 | | 5 | |
 | | |
 | | ND |
1.8 | | 5 | |
 | | |
 | | ND |
1.8 | | 5 | |
 | | |
 | | ND |
1.8 | | 5 | |
 | | |
 | | ND |
1.8 | | 5 | |
 | | |
 | | ND |
1.8 | | 5 | |
 | | |
 | | ND |
1.8 | | 5 | | | | | | | ND | 1.8 | | 5 | |
 | | |
 | | | | | | |
 | | |
 | | ND |
5.41 | | 5 | |
 | | |
 | | ND |
54.1 | | | |
 | | |
 | | ND |
54.1 | | 250 | | | | | | | | | | | |
 | | |
 | | ND |
2.65 | | 330 | |
 | | |
 | | ND |
2.65 | | 330 | |
 | | |
 | | ND |
2.65 | | 330 | |
 | | |
 | | ND |
2.65 | | 330 | |
 | | |
 | | ND |
3.97 | | 330 | |
 | | |
 | | ND |
3.97 | | | |
 | | |
 | | ND |
3.97 | | | |
 | | |
 | | ND |
2.65 | | 330 | |
 | | |
 | | ND |

2.65 | | 330 | | | | | | | ND | 2.65 | | 330 | | | | | | | | | - | | |
 | | |
 | | ND |
2.65 | | 330 | |
 | | |
 | | ND |
2.65 | | 330 | |
 | | |
 | | ND |
2.65 | | 330 | |
 | | |
 | | ND |
5.29 | | 10000 | |
 | | |
 | | ND |
5.29 | | | |
 | | |
 | | ND |
5.29 | | 330 | |
 | | |
 | | ND |
2.65 | | 330 | |
 | | |
 | | ND |
2.65 | | 330 | |
 | | |
 | | ND |
3.97 | | | |
 | | |
 | | ND |
2.65 | | 330 | |
 | | |
 | | ND |
26.5 | | | |
 | | |
 | | ND |
13.2 | | | |
 | | |
 | | ND |
13.2 | | | |
 | | |
 | | ND |
13.2 | | 330 | |
 | | |
 | | ND |
66.2 | \vdash | | |
 | | |
 | | ND |
66.2 | | | |
 | | |
 | | ND |
6.62 | | 330 | | | | - | | | | | \vdash | | |
 | | |
 | | ND |
6.62 | | 330 | |
 | | |
 | | ND |
26.5 | | 2000 | |
 | | - |
 | | ND |
26.5 | | 2000 | |
 | | |
 | | ND |
26.5 | | | |
 | | |
 | | ND |
5.29 | | 330 | |
 | | |
 | | ND |
13.2 | | | |
 | | |
 | | ND |
13.2 | | | | |
 | |
 | ND |
13.2 | | |------|----------|------|----------|------|----------|------| | |
 | |
 | ND |
39.7 | 330 | | |
 | |
 | ND |
26.5 | 330 | | |
 | |
 | ND |
26.5 | 330 | | |
 | |
 | ND |
26.5 | 330 | | |
 | |
 | ND |
26.5 | 330 | | |
 | |
 | ND |
26.5 | 330 | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
6.62 | 330 | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
2.65 | 330 | | |
 | |
 | ND |
6.62 | 330 | | |
 | |
 | ND |
13.2 | | | |
 | |
 | ND |
6.62 | 330 | | |
 | |
 | ND |
2.65 | | | |
 | |
 | ND |
6.62 | 330 | | |
 | |
 | ND |
6.62 | 330 | | |
 | |
 | ND |
6.62 | 330 | | |
 | |
 | ND |
6.62 | 330 | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
13.2 | | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
52.9 | | | |
 | |
 | ND |
52.9 | | | |
 | |
 | ND |
52.9 | | | |
 | |
 | ND |
26.5 | | | |
 | |
 | ND |
26.5 | | | |
 | |
 | ND |
26.5 | | | |
 | |
 | ND |
330 | 2000 | | |
 | |
 | ND |
13.2 | 330 | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
66.2 | | | |
 | |
 | ND |
26.5 | | | |
 | |
 | ND |
66.2 | | | |
 | |
 | ND |
66.2 | | | |
 | |
 | ND |
66.2 | | | |
 | |
 | ND |
13.2 | | | 4.42 | 1.04 | 1.16 | 1 10 | 2.01 | 1 10 | 0 0 | | 4.43 |
1.04 | 4.46 |
1.10 | 3.91 |
1.10 | 8.8 | | |
 | |
 | ND |
0.22 | 0.63 | | |
 | | | | | | |
1 | | | | ı | 1 | • | | |-------|--|------|--|------|---|--------|------| |
 | |
 | | 8.59 | | 1.1 | 76 | |
 | |
 | | 25.2 | | 2.20 | 34 | |
1 | |
 | | 3.36 | - | 0.22 | 79 | |
 | |
 | | 323 | | 1.10 | 1800 | |
 | |
 | | ND | | 0.0881 | 0.23 | |
 | |
 | | | | | | |
 | |
 | | | | | | |
 | |
 | | 28.9 | | 4.40 | 180 | | | LIVINGSTON G-: | Owl Creek BF ²
(7/23/15) | | | | | |-----------------------------------|----------------|--|-------|--------|----|-------| | Analyte | RESULT | DL | RL | RESULT | DL | RL | | Dioxins/Furans (pg/g) | | | | | | | | 1,2,3,4,6,7,8-Hepta CDD | 0.192 | 0.101 | 1.00 | | | | | 1,2,3,4,6,7,8-Hepta CDF | ND | 0.104 | 1.00 | | | | | 1,2,3,4,7,8,9-Hepta CDF | ND | 0.103 | 1.00 | | | | | 1,2,3,4,7,8-Hexa CDD | ND | 0.102 | 1.00 | | | | | 1,2,3,4,7,8-Hexa CDF | ND | 0.100 | 1.00 | | | | | 1,2,3,6,7,8-Hexa CDD | ND | 0.107 | 1.00 | | | | | 1,2,3,6,7,8-Hexa CDF | ND | 0.105 | 1.00 | | | | | 1,2,3,7,8,9-Hexa CDD | ND | 0.106 | 1.00 | | | | | 1,2,3,7,8,9-Hexa CDF | ND | 0.101 | 1.00 | | | | | 1,2,3,7,8-Penta CDD | ND | 0.103 | 1.00 | | | | | 1,2,3,7,8-Penta CDF | ND | 0.110 | 1.00 | | | | | 2,3,4,6,7,8-Hexa CDF | ND | 0.0949 | 1.00 | | | | | 2,3,4,7,8-Penta CDF | ND | 0.108 | 1.00 | | | | | 2,3,7,8-Tetra CDD | 0.726 | 0.108 | 0.200 | | | | | 2,3,7,8-Tetra CDF | 6.81 (7.20*) | 0.100 | 0.200 | | | | | Octa CDD | 0.783 | 0.105 | 2.00 | | | | | Octa CDF | ND | 0.107 | 2.00 | | | | | Total Hepta CDD | 0.327 | 0.101 | 1.00 | | | | | Total Hepta CDF | ND | 0.104 | 1.00 | | | | | Total Hexa CDD | ND | 0.106 | 1.00 | | | | | Total Hexa CDF | ND | 0.100 | 1.00 | | | | | Total Penta CDD | ND | 0.103 | 1.00 | | | | | Total Penta CDF | ND | 0.109 | 1.00 | | | | | Total Tetra CDD | 0.726 | 0.108 | 0.200 | | | | | Total Tetra CDF | 11.7 | 0.100 | 0.200 | | | | | Polychlorinated Biphenyls (ug/kg) | | | | | | | | Aroclor 1016 | ND | | 10.5 | ND | | 9.96 | | Aroclor 1221 | ND | | 10.5 | ND | | 9.96 | | Aroclor 1232 | ND | | 10.5 | ND | | 9.96 | | Aroclor 1242 | ND | | 10.5 | ND | | 9.96 | | Aroclor 1248 | ND | | 10.5 | ND | | 9.96 | | Aroclor 1254 | ND | | 10.5 | ND | | 9.96 | | Aroclor 1260 | ND | | 10.5 | ND | | 9.96 | | Organochlorine Pesticides (ug/kg) | | | | | | | | Aldrin | ND | | 4.66 | ND | | 0.996 | | alpha-BHC | ND | | 4.66 | ND | | 0.996 | | beta-BHC | ND | | 4.66 | ND | | 0.996 | | delta-BHC | ND | | 4.66 | ND | | 0.996 | | gamma-BHC (Lindane) | ND | | 4.66 | ND | | 0.996 | | cis-Chlordane | ND | | 4.66 | ND | | 0.996 | | trans-Chlordane ND 4.66 ND 4,4'-DDD ND 4.66 ND 4,4'-DDE ND 4.66 ND 4,4'-DDT ND 4.66 ND Dieldrin ND 4.66 ND Endosulfan I ND 4.66 ND Endosulfan Sulfate ND 4.66 ND Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND< | 0.996
0.996
0.996
0.996
0.996
0.996 | |---|--| | 4,4'-DDE ND 4.66 ND 4,4'-DDT ND 4.66 ND Dieldrin ND 4.66 ND Endosulfan I ND 4.66 ND Endosulfan sulfate ND 4.66 ND Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical) | 0.996
0.996
0.996
0.996 | | 4,4'-DDT ND 4.66 ND Dieldrin ND 4.66 ND Endosulfan II ND 4.66 ND Endosulfan sulfate ND 4.66 ND Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor ND 4.66 ND Methoxychlor ND 14 ND | 0.996
0.996
0.996 | | Dieldrin ND 4.66 ND Endosulfan I ND 4.66 ND Endosulfan sulfate ND 4.66 ND Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical) | 0.996
0.996 | | Endosulfan I ND 4.66 ND Endosulfan II ND 4.66 ND Endosulfan sulfate ND 4.66 ND Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolat | 0.996 | | Endosulfan II ND 4.66 ND Endrin ND 4.66 ND Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) 2.82 ND Acenaphthene ND 2.82 ND Anthracene | _ | | Endosulfan sulfate ND 4.66 ND Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 4.66 ND Methoxychlor ND 14 ND Methoxychlor ND 140 ND Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) 2.82 ND Acenaphthene ND 2.82 ND Anthracene< | 0.996 | | Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) 140 ND Acenaphthene ND 2.82 ND Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoran | | | Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) ND 2.82 ND Acenaphthene ND 2.82 ND Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND | 0.996 | | Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) ND 2.82 ND Acenaphthene ND 2.82 ND Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND </td <td>0.996</td> | 0.996 | | Heptachlor | 0.996 | | Heptachlor epoxide ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical) ND 140 ND
Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) ND 2.82 ND Acenaphthene ND 2.82 ND Anthracene ND 2.82 ND Benzo(a)anthracene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND | 0.996 | | Methoxychlor ND 14 ND Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) ND 2.82 ND Acenaphthene ND 2.82 ND Anthracene ND 2.82 ND Benz(a)anthracene ND 2.82 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND | 0.996 | | Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) ND 2.82 ND Acenaphthene ND 2.82 ND Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benzo(a)anthracene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND | 0.996 | | Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) ND 2.82 ND Acenaphthene ND 2.82 ND Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benz(a)anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND | 2.99 | | Semivolatile Organic Compounds (ug/kg) ND 2.82 ND Acenaphthene ND 2.82 ND Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benz(a)anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND | 29.9 | | Acenaphthene ND 2.82 ND Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benz(a)anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND | 29.9 | | Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benz(a)anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND | | | Anthracene ND 2.82 ND Benz(a)anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND | 249 | | Benz(a)anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND | 249 | | Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND | 249 | | Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND | 249 | | Benzo(k)fluoranthene ND 4.23 ND | 249 | | | 249 | | Benzo(g,h,i)perylene ND 2.82 ND | 249 | | | 249 | | Chrysene ND 2.82 ND | 249 | | Dibenz(a,h)anthracene ND 2.82 ND | 249 | | Fluoranthene ND 2.82 ND | 249 | | Fluorene ND 2.82 ND | 249 | | Indeno(1,2,3-cd)pyrene ND 2.82 ND | 249 | | 1-Methylnaphthalene ND 5.64 ND | 249 | | 2-Methylnaphthalene ND 5.64 ND | 249 | | Naphthalene ND 5.64 ND | 249 | | Phenanthrene ND 2.82 ND | 249 | | Pyrene ND 2.82 ND | 249 | | Carbazole ND 4.23 ND | 249 | | Dibenzofuran ND 2.82 ND | 249 | | 4-Chloro-3-methylphenol ND 28.2 ND | 249 | | 2-Chlorophenol ND 14.1 ND | 249 | | 2,4-Dichlorophenol | 249 | | 2,4-Dimethylphenol | 249 | | 2,4-Dinitrophenol ND 70.5 ND | 249 | | 4,6-Dinitro-2-methylphenol ND 70.5 ND | | | 2-Methylphenol ND 7.05 ND | 598 | | 3+4-Methylphenol(s) | ND |
7.05 | ND |
249 | |------------------------------|----------|----------|----------|----------| | 2-Nitrophenol | ND |
28.2 | ND |
249 | | 4-Nitrophenol | ND |
28.2 | ND |
249 | | Pentachlorophenol (PCP) | ND |
28.2 | ND |
249 | | Phenol | ND |
5.64 | ND |
249 | | 2,3,4,6-Tetrachlorophenol | ND |
14.1 | ND |
249 | | 2,3,5,6-Tetrachlorophenol | ND |
14.8 | ND |
249 | | 2,4,5-Trichlorophenol | ND |
14.1 | ND |
249 | | 2,4,6-Trichlorophenol | ND |
14.1 | ND |
249 | | Bis(2-ethylhexyl)phthalate | ND |
42.3 | ND |
249 | | Butyl benzyl phthalate | ND |
28.2 | ND |
249 | | Diethylphthalate | ND |
28.2 | ND |
249 | | Dimethylphthalate | ND |
28.2 | ND |
249 | | Di-n-butylphthalate | ND |
28.2 | ND |
249 | | Di-n-octyl phthalate | ND |
28.2 | ND |
249 | | N-Nitrosodimethylamine | ND |
7.05 | ND |
249 | | N-Nitroso-di-n-propylamine | ND |
7.05 | ND |
249 | | N-Nitrosodiphenylamine | ND |
7.05 | ND |
249 | | Bis(2-Chloroethoxy) methane | ND |
7.05 | ND |
249 | | Bis(2-Chloroethyl) ether | ND |
7.05 | ND |
249 | | Bis(2-Chloroisopropyl) ether | ND |
7.05 | ND |
249 | | Hexachlorobenzene | ND |
2.82 | ND |
249 | | Hexachlorobutadiene | ND |
7.05 | ND |
249 | | Hexachlorocyclopentadiene | ND |
14.1 | ND |
249 | | Hexachloroethane | ND |
7.05 | ND |
249 | | 2-Chloronaphthalene | ND |
2.82 | ND |
249 | | 1,2-Dichlorobenzene | ND |
7.05 | ND |
249 | | 1,3-Dichlorobenzene | ND |
7.05 | ND |
249 | | 1,4-Dichlorobenzene | ND |
7.05 | ND |
249 | | 1,2,4-Trichlorobenzene | ND |
7.05 | ND |
249 | | 4-Bromophenyl phenyl ether | ND |
7.05 | ND |
249 | | 4-Chlorophenyl phenyl ether | ND |
7.05 | ND |
249 | | Aniline | ND |
14.1 | ND |
249 | | 4-Chloroaniline | ND |
7.05 | ND |
249 | | 2-Nitroaniline | ND |
56.4 | ND |
249 | | 3-Nitroaniline | ND |
56.4 | ND |
249 | | 4-Nitroaniline | ND |
56.4 | ND |
249 | | Nitrobenzene | ND |
28.2 | ND |
249 | | 2,4-Dinitrotoluene | ND |
28.2 | ND |
249 | | 2,6-Dinitrotoluene | ND |
28.2 | ND |
249 | | Benzoic acid | ND |
352 | ND |
1250 | | | ND | | | | | Benzyl alcohol | ND
ND |
14.1 | ND |
249 | | Benzyl alcohol
Isophorone | | | ND
ND | | | Bis(2-Ethylhexyl) adipate | ND |
70.5 | ND |
249 | |---|--------------|------------|------|-----------| | 3,3'-Dichlorobenzidine | ND |
28.2 | ND |
249 | | 1,2-Dinitrobenzene | ND |
70.5 | ND |
249 | | 1,3-Dinitrobenzene | ND |
70.5 | ND |
249 | | 1,4-Dinitrobenzene | ND |
70.5 | ND |
249 | | Pyridine | ND |
14.1 | ND |
498 | | Total Metals (mg/kg) | | | | | | Arsenic | 1.65 |
1.10 | ND |
1.03 | | Barium | 59.4 |
1.10 | |
 | | Cadmium | ND |
0.221 | ND |
0.206 | | Chromium | ND |
4.42 | 3.88 |
1.03 | | Copper | 24.5 |
1.10 | 11.7 |
1.03 | | Lead | 2.5 |
0.221 | ND |
1.03 | | Manganese | 210 |
1.10 | 145 |
1.03 | | Mercury | ND |
0.0884 | ND |
0.165 | | Selenium | ND |
2.21 | |
 | | Silver | ND |
0.221 | |
 | | Zinc | 33.3 |
4.42 | 17.1 |
4.11 | | ¹ Results from initial source of identified berm |
material | | | | | ² Results from second source of identified bern | n material | | | | | | | | | | | | | | | | | | | I I | | ı | Import Criteria | | | | | |-----------------|--|--|--|--| | | | | | | | | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 0.5 | | | | | | 0.5 | | | | | | | | | | | | 5 | | | | | | 5 | 10 | | | | | | 10 | | | | | | 10 | | | | | | 10 | | | | | | 10 | | | | | | 10 | | | | | | 10 | | | | | | | | | | | | 5 | | | | | | 5 | | | | | | 5 | | | | | | 5 5 | | | | | | 5 | | | | | | 100 | | | | | | 100 | | | | | | 100 | | | | | |------------------|--|--|--|--| | | | | | | | 5 | | | | | | 5 | | | | | | 5
5
5
5 | | | | | | | | | | | | 5
5 | | | | | | 5 | | | | | | 5
5
5 | | | | | | 5 | | | | | | 5 | | | | | | 5
5 | | | | | | 5 | | | | | | 5
5 | | | | | | | | | | | | | | | | | | 250 | | | | | | | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | | | | | | | | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 10000 | | | | | | | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | | | | | | | 330 | 330 | | | | | | | | | | | | | | | | | | 330 | | | | | | | | | | | | 330 | | | | | |------|--|--|--|--| | | | | | | | 2000 | | | | | | | | | | | | | | | | | | 330 | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | | | | | | | | | | | | | 330 | 330 | | | | | | 330 | | | | | | | | | | | | 330 | | | | | | | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | 2000 | | | | | | 2000 | | | | | | 330 | | | | | | | | | | | | | | | | | | 8.8 | | | | | |------|--|--|--|--| | | | | | | | 0.63 | | | | | | 76 | | | | | | 34 | | | | | | 79 | | | | | | 1800 | | | | | | 0.23 | | | | | | | | | | | | | | | | | | 180 | • | | | |----------|--------------|------|------|---|--| ļ | ļ | | | | | | | | | | | | | | |
<u> </u> |
 |
 |
 |
 |
 | | | | | | |
 | | | | | | | | | | | | | | | | | | |
 | |
 | <u> </u> | 1 | | l. | ı | | | | • | • | | • | | |---|---|------|----------|---|------| | | | | | | | | | | | | |
|
 | | |
 | <u> </u> | 1 | | | | | | |
 | | | | | |------|--|--|--|--|
 | | | | | |------|------|--|------|--|
 |
 | |
 |
 | | | | | | | | | | | |
 | | |
 | |--|------|------|------|------|
 |
 |
 |
 | | |
 | | | | |---|------|--|--|--| | | | | | | | L | | | | | |
 | | | | | |------|--|--|--|--|
 | | | | | |------|------|--|------|--|
 |
 | |
 |
 | | | | | | | | | | | | • | • | | • | | |---|---|------|----------|---|------|
 | | |
 | <u> </u> | 1 | | | | | | | | • | • | | • | | |---|---|------|----------|---|------|
 | | |
 | <u> </u> | 1 | | | | | | |
 | | | | | |------|--|--|--|--| <u> </u> | | | | | | |----------|------|----------|----|------|--------| | | | | |
 | | | | | <u> </u> | |
 | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | [|
 | | [| | | | | \neg | I 7 | <u> </u> | | | | | | | | | | | | | | |
 | | |
 |
 | <u> </u> | [| | | | | | | | | | t. | | | | - | | | | | |---|--|--|--|--|
 |
 | | |--|--|------|------|--| - | | | | | |---|--|--|--|--| • | • | | • | | |---|---|------|----------|---|------|
 |
 | |
 | <u> </u> | ı | | | | | | | | | |
 | | |--|------|--|------|--| | |
 | |
 | | | | | |
 | | |--|------|--|------|--| | |
 | |
 | | # Berm Soil only |
 | | | | | |------|--|--|--|--| 1 1/2" (| CRUSHED ROCK | | |-----------------------------------|-----------|----------|----------|--------------|----| | | LIVINGSTO | ON G-121 | ODOT 1½ | LIVINGSTON (| | | Analyte | RESULT | DL | RL | RESULT | DL | | Dioxins/Furans (pg/g) | | | | | | | 1,2,3,4,6,7,8-Hepta CDD | 0.144 | 0.111 | 1.00 | | | | 1,2,3,4,6,7,8-Hepta CDF | ND | 0.106 | 1.00 | | | | 1,2,3,4,7,8,9-Hepta CDF | ND | 0.105 | 1.00 | | | | 1,2,3,4,7,8-Hexa CDD | ND | 0.113 | 1.00 | | | | 1,2,3,4,7,8-Hexa CDF | ND | 0.0600 | 1.00 | | | | 1,2,3,6,7,8-Hexa CDD | ND | 0.118 | 1.00 | | | | 1,2,3,6,7,8-Hexa CDF | ND | 0.063 | 1.00 | | | | 1,2,3,7,8,9-Hexa CDD | ND | 0.117 | 1.00 | | | | 1,2,3,7,8,9-Hexa CDF | ND | 0.060 | 1.00 | | | | 1,2,3,7,8-Penta CDD | ND | 0.117 | 1.00 | | | | 1,2,3,7,8-Penta CDF | ND | 0.109 | 1.00 | | | | 2,3,4,6,7,8-Hexa CDF | ND | 0.057 | 1.00 | | | | 2,3,4,7,8-Penta CDF | ND | 0.106 | 1.00 | | | | 2,3,7,8-Tetra CDD | ND | 0.109 | 0.200 | | | | 2,3,7,8-Tetra CDF | ND | 0.078 | 0.200 | | | | Octa CDD | 0.746 | 0.171 | 2.00 | | | | Octa CDF | ND | 0.101 | 2.00 | | | | Total Hepta CDD | 0.291 |
0.111 | 1.00 | | | | Total Hepta CDF | 0.226 | 0.106 | 1.00 | | | | Total Hexa CDD | ND | 0.117 | 1.00 | | | | Total Hexa CDF | ND | 0.0598 | 1.00 | | | | Total Penta CDD | ND | 0.117 | 1.00 | | | | Total Penta CDF | ND | 0.107 | 1.00 | | | | Total Tetra CDD | ND | 0.109 | 0.200 | | | | Total Tetra CDF | ND | 0.0779 | 0.200 | | | | Polychlorinated Biphenyls (ug/kg) | | | | | | | Aroclor 1016 | ND | | 10.3 | | | | Aroclor 1221 | ND | | 10.3 | | | | Aroclor 1232 | ND | | 10.3 | | | | Aroclor 1242 | ND | | 10.3 | | | | Aroclor 1248 | ND | | 10.3 | | | | Aroclor 1254 | ND | | 10.3 | | | | Aroclor 1260 | ND | | 10.3 | | | | Organochlorine Pesticides (ug/kg) | | | | | | | Aldrin | ND | | 4.82 | | | | alpha-BHC | ND | | 4.82 | | | | beta-BHC | ND | | 4.82 | | | | delta-BHC | ND | | 4.82 | | | | gamma-BHC (Lindane) | ND |
4.82 |
 | |--|----|----------|------| | cis-Chlordane | ND |
4.82 |
 | | trans-Chlordane | ND |
4.82 |
 | | 4,4'-DDD | ND |
4.82 |
 | | 4,4'-DDE | ND |
4.82 |
 | | 4,4'-DDT | ND |
4.82 |
 | | Dieldrin | ND |
4.82 |
 | | Endosulfan I | ND |
4.82 |
 | | Endosulfan II | ND |
4.82 |
 | | Endosulfan sulfate | ND |
4.82 |
 | | Endrin | ND |
4.82 |
 | | Endrin Aldehyde | ND |
4.82 |
 | | Endrin ketone | ND |
4.82 |
 | | Heptachlor | ND |
4.82 |
 | | Heptachlor epoxide | ND |
4.82 |
 | | Methoxychlor | ND |
14.5 |
 | | Chlordane (Technical) | ND |
145 |
 | | Toxaphene (Total) | ND |
145 |
 | | Semivolatile Organic Compounds (ug/kg) | | | | | Acenaphthene | ND |
2.79 |
 | | Acenaphthylene | ND |
2.79 |
 | | Anthracene | ND |
2.79 |
 | | Benz(a)anthracene | ND |
2.79 |
 | | Benzo(a)pyrene | ND |
4.18 |
 | | Benzo(b)fluoranthene | ND |
4.18 |
 | | Benzo(k)fluoranthene | ND |
4.18 |
 | | Benzo(g,h,i)perylene | ND |
2.79 |
 | | Chrysene | ND |
2.79 |
 | | Dibenz(a,h)anthracene | ND |
2.79 |
 | | Fluoranthene | ND |
2.79 |
 | | Fluorene | ND |
2.79 |
 | | Indeno(1,2,3-cd)pyrene | ND |
2.79 |
 | | 1-Methylnaphthalene | ND |
5.57 |
 | | 2-Methylnaphthalene | ND |
5.57 |
 | | Naphthalene | ND |
5.57 |
 | | Phenanthrene | ND |
2.79 |
 | | Pyrene | ND |
2.79 |
 | | Carbazole | ND |
4.18 |
 | | Dibenzofuran | ND |
2.79 |
 | | 4-Chloro-3-methylphenol | ND |
27.9 |
 | | 2-Chlorophenol | ND |
13.9 |
 | | 2,4-Dichlorophenol | ND |
13.9 |
 | | 2,4-Dimethylphenol | ND |
13.9 |
 | | 2,4-Dinitrophenol | ND |
69.7 |
 | | 1 | | |
, | |------------------------------|----|----------|-------| | 4,6-Dinitro-2-methylphenol | ND |
69.7 |
 | | 2-Methylphenol | ND |
6.97 |
 | | 3+4-Methylphenol(s) | ND |
6.97 |
 | | 2-Nitrophenol | ND |
27.9 |
 | | 4-Nitrophenol | ND |
27.9 |
 | | Pentachlorophenol (PCP) | ND |
5.57 |
 | | Phenol | ND |
5.57 |
 | | 2,3,4,6-Tetrachlorophenol | ND | 13.9 | | | 2,3,5,6-Tetrachlorophenol | ND |
14.6 |
 | | 2,4,5-Trichlorophenol | ND | 13.9 | | | 2,4,6-Trichlorophenol | ND |
13.9 |
 | | Bis(2-ethylhexyl)phthalate | ND |
41.8 |
 | | Butyl benzyl phthalate | ND |
27.9 |
 | | Diethylphthalate | ND |
27.9 |
 | | Dimethylphthalate | ND |
27.9 |
 | | Di-n-butylphthalate | ND |
27.9 |
 | | Di-n-octyl phthalate | ND |
27.9 |
 | | N-Nitrosodimethylamine | ND |
6.97 |
 | | N-Nitroso-di-n-propylamine | ND |
6.97 |
 | | N-Nitrosodiphenylamine | ND |
6.97 |
 | | Bis(2-Chloroethoxy) methane | ND |
6.97 |
 | | Bis(2-Chloroethyl) ether | ND |
6.97 |
 | | Bis(2-Chloroisopropyl) ether | ND |
6.97 |
 | | Hexachlorobenzene | ND |
2.79 |
 | | Hexachlorobutadiene | ND |
6.97 |
 | | Hexachlorocyclopentadiene | ND |
13.9 |
 | | Hexachloroethane | ND |
6.97 |
 | | 2-Chloronaphthalene | ND |
2.79 |
 | | 1,2-Dichlorobenzene | ND |
6.97 |
 | | 1,3-Dichlorobenzene | ND |
6.97 |
 | | 1,4-Dichlorobenzene | ND |
6.97 |
 | | 1,2,4-Trichlorobenzene | ND |
6.97 |
 | | 4-Bromophenyl phenyl ether | ND |
6.97 |
 | | 4-Chlorophenyl phenyl ether | ND |
6.97 |
 | | Aniline | ND |
13.9 |
 | | 4-Chloroaniline | ND |
6.97 |
 | | 2-Nitroaniline | ND |
55.7 |
 | | 3-Nitroaniline | ND |
55.7 |
 | | 4-Nitroaniline | ND |
55.7 |
 | | Nitrobenzene | ND |
27.9 |
 | | 2,4-Dinitrotoluene | ND |
27.9 |
 | | 2,6-Dinitrotoluene | ND |
27.9 |
 | | Benzoic acid | ND |
348 |
 | | Benzyl alcohol | ND |
13.9 |
 | | ' | | | | | Isophorone | ND | | 6.97 | | | | |---------------------------|-------|---|----------------|-------------------|------------|--| | Azobenzene (1,2-DPH) | ND | | 6.97 | | | | | Bis(2-Ethylhexyl) adipate | ND | | 69.7 | | | | | 3,3'-Dichlorobenzidine | ND | | 27.9 | | | | | 1,2-Dinitrobenzene | ND | | 69.7 | | | | | 1,3-Dinitrobenzene | ND | | 69.7 | | | | | 1,4-Dinitrobenzene | ND | | 69.7 | | | | | Pyridine | ND | | 13.9 | | | | | Total Metals (mg/kg) | | | | | | | | Arsenic | 1.02 | | 1.02 | | | | | Barium | 41.8 | | 1.02 | | | | | Cadmium | 0.234 | | 0.203 | | | | | Chromium | ND | | 4.06 | | | | | Copper | 98.2 | | 1.02 | 100/115/90.4 | | | | Lead | 2.42 | | 0.203 | | | | | Manganese | 204 | | 1.02 | | | | | Mercury | ND | | 0.0813 | | | | | Selenium | ND | | 2.03 | | | | | Silver | ND | | 0.203 | | | | | Zinc | 30.0 | | 1.60 | | | | | | | | | | | | | Notes: | | | | | | | | | * | = confir | mation resul | t | | | | | | = exceed | ds Import Cri | iteria | | | | | ND | = not de | tected | | | | | | | reanalysis of a second aliquot from the sar | | | | | | | | composite samples were then collected fron | | | | | | | ** | concentrations were 4.29, 4.43 and 4.46 mg/ | | | | | | | | copper, zinc and manganese results a copper | | | | | | | 1 | Results | from initial s | ource of berm ma | aterial id | | | | 2 | | | source of berm r | | | | | | courts | . 5 5000110 | 554.55 51 5511111 | | | | OT 1½" E | | | | | | |------------|-----------------|---|--|--|--| | | Import Criteria | | | | | | Comp
RL | import criteria | | | | | | NL NL | | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 0.5 | | | | | | | 0.5 | | | | | | | 5 | | | | | | | 5 | 10 | | | | | | | 10 | | | | | | | 10 | | | | | | | 10 | | | | | | | 10 | | | | | | | 10 | | | | | | | 10 | - | | | | | | 10 | | | | | | | 5 | | | | | | | 5 | - | | | | | | 5 | | | | | | | 5 | - | | | | | |] 5 | | | | | |
5 | | | | | | |-----------|-----|---|---|---|--| |
100 | | | | | | |
100 | | | | | | |
5
 | | | | | | |
250 | | | | | | | | | | | | | |
330 | | | | | | |
 | | | | | | |
 | | | | | | |
330 | | | | | | |
10000 | | | | | | |
 | | | | | | |
330 | | | | | | |
330 | | | | | | |
330 | | | | | | |
 | | | | | | |
330 | | | | | | |
 | | | | | | |
 | | | | | | |
 | | | | | | |
330 | | | | | | |
 | | | | | | |
• | i . | i | 1 | 1 | | | 1 | | 1 | | |----------|--|---|--| |
 | | | | |
330 | | | | |
330 | | | | |
 | | | | |
2000 | | | | |
 | | | | |
330 | | | | | | | | | |
 | | | | | | | | | |
 | | | | |
330 | | | | | | | | | |
330 | | | | |
 | | | | |
 | | | | |
330 | | | | |
 | | | | |
 | | | | |
 | | | | |
330 | | | | |
330 | | | | | | | | | |
330 | | | | |
 | | | | |
330 | | | | |

2000 | | | | | 330 | | | | |
330 | | | | | | 8.8 | | | | | | | | |----------------------------------|--------------------------------|--------------|--------------|-------------|-------------|---------------|-------------|--| | | | | | | | | | | | | 0.63 | | | | | | | | | | 76 | | | | | | | | | 1.02 | 34 | | | | | | | | | | 79 | | | | | | | | | | 1800 | | | | | | | | | | 0.23 | 180 | ample was | 4.45. Three 5-point | | | | | | | | | | I and the resulting arsenic | | | | | | | | | g. Laboratory reports from these | | | | | | | | | | | anganese results are not on ta | ble; supplie | er indicates | results met | criteria an | d will be pro | viding labo | | | entified | | | | | | | - | | | dentified | | | | | | | | | | acmined | | | | | | | | | | | | | Ī | T | | |---------|-------|------|---|---|---|
 |
 | | | | | <u></u> |
 |
 | | | | | |
- | | | | · | • | | |----------|------|---|--|---|------| |
|
 | | | |
 | | |
 | - | — |
 | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | ratory repo | ort | | | | | |-------------|-----|--|--|--|--| | , , | [| | | | | | |----------|------|--|------|-----|--| | | | | | | | | <u> </u> | | | | | | | | | | | | | | [|
 | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | [| <u> </u> | | | | | | | [| <u> </u> | | | | | | | l |
 | |
 | | | | | | | | | | | | | | | | | | <u> </u> | l . | | | l . | | | | | | | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 |
 | | |--|------|--|------|--| | |
 | |
 | | | | ı | I | | I | | |--|---|---|------|---|--|
 | [| | | | | | |----------|------|--|------|-----|--| | | | | | | | | <u> </u> | | | | | | | | | | | | | | [|
 | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | [| <u> </u> | | | | | | | [| <u> </u> | | | | | | | l |
 | |
 | | | | | | | | | | | | | | | | | | <u> </u> | l . | | | l . | | | | | | | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | Ī | | Ī | T | | |---------|---|------|------|---|--|
 | <u></u> | | |
 |
 |
 | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 |
 | | | | | |------|----------|------|------|------|
 | <u> </u> |
 |
 |
 | 1 | | | | | | ı | I | | I | | |--|---|---|--|---|--| T | Т | T | | T | T | | |----------|---|---|---|---|---|---|---|--| - | | | | - | | | | | | | | | | | | | | | <u> </u> |
| - | | 1 | | | | 1 | 1 | | | | | | | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | # 1.5 in Crushed only | | | |
 | | |--|------|--|------|--| | |
 | |
 | | # 1.5 in Crushed only | |
 |
 | |----------|------|------| | |
 |
 | - | <u> </u> |
 | | | | | | | | | | | | | | | | | 1 | |--|--|---|-----| | | l | | l | l . | | | | • | 1 1/2" (| CRUSHED ROCK | | | |-----------------------------------|-----------|----------|----------|-------------------------------------|---------|--| | | LIVINGSTO | ON G-121 | ODOT 1½ | LIVINGSTON G-121 O
Comp/C Comp/W | | | | | | Grab | 0.01.1/1 | | mposite | | | Analyte | RESULT | DL | RL | RESULT | DL | | | Dioxins/Furans (pg/g) | | | | | | | | 1,2,3,4,6,7,8-Hepta CDD | 0.144 | 0.111 | 1.00 | | | | | 1,2,3,4,6,7,8-Hepta CDF | ND | 0.106 | 1.00 | | | | | 1,2,3,4,7,8,9-Hepta CDF | ND | 0.105 | 1.00 | | | | | 1,2,3,4,7,8-Hexa CDD | ND | 0.113 | 1.00 | | | | | 1,2,3,4,7,8-Hexa CDF | ND | 0.0600 | 1.00 | | | | | 1,2,3,6,7,8-Hexa CDD | ND | 0.118 | 1.00 | | | | | 1,2,3,6,7,8-Hexa CDF | ND | 0.063 | 1.00 | | | | | 1,2,3,7,8,9-Hexa CDD | ND | 0.117 | 1.00 | | | | | 1,2,3,7,8,9-Hexa CDF | ND | 0.060 | 1.00 | | | | | 1,2,3,7,8-Penta CDD | ND | 0.117 | 1.00 | | | | | 1,2,3,7,8-Penta CDF | ND | 0.109 | 1.00 | | | | | 2,3,4,6,7,8-Hexa CDF | ND | 0.057 | 1.00 | | | | | 2,3,4,7,8-Penta CDF | ND | 0.106 | 1.00 | | | | | 2,3,7,8-Tetra CDD | ND | 0.109 | 0.200 | | | | | 2,3,7,8-Tetra CDF | ND | 0.078 | 0.200 | | | | | Octa CDD | 0.746 | 0.171 | 2.00 | | | | | Octa CDF | ND | 0.101 | 2.00 | | | | | Total Hepta CDD | 0.291 | 0.111 | 1.00 | | | | | Total Hepta CDF | 0.226 | 0.106 | 1.00 | | | | | Total Hexa CDD | ND | 0.117 | 1.00 | | | | | Total Hexa CDF | ND | 0.0598 | 1.00 | | | | | Total Penta CDD | ND | 0.117 | 1.00 | | | | | Total Penta CDF | ND | 0.107 | 1.00 | | | | | Total Tetra CDD | ND | 0.109 | 0.200 | | | | | Total Tetra CDF | ND | 0.0779 | 0.200 | | | | | Polychlorinated Biphenyls (ug/kg) | | | | | | | | Aroclor 1016 | ND | | 10.3 | | | | | Aroclor 1221 | ND | | 10.3 | | | | | Aroclor 1232 | ND | | 10.3 | | | | | Aroclor 1242 | ND | | 10.3 | | | | | Aroclor 1248 | ND | | 10.3 | | | | | Aroclor 1254 | ND | | 10.3 | | | | | Aroclor 1260 | ND | | 10.3 | | | | | Organochlorine Pesticides (ug/kg) | | | | | | | | Aldrin | ND | | 4.82 | | | | | alpha-BHC | ND | | 4.82 | | | | | beta-BHC | ND | | 4.82 | | | | | <u></u> | | | | |--|----|----------|------| | delta-BHC | ND |
4.82 |
 | | gamma-BHC (Lindane) | ND |
4.82 |
 | | cis-Chlordane | ND |
4.82 |
 | | trans-Chlordane | ND |
4.82 |
 | | 4,4'-DDD | ND |
4.82 |
 | | 4,4'-DDE | ND |
4.82 |
 | | 4,4'-DDT | ND |
4.82 |
 | | Dieldrin | ND |
4.82 |
 | | Endosulfan I | ND |
4.82 |
 | | Endosulfan II | ND |
4.82 |
 | | Endosulfan sulfate | ND |
4.82 |
 | | Endrin | ND |
4.82 |
 | | Endrin Aldehyde | ND |
4.82 |
 | | Endrin ketone | ND |
4.82 |
 | | Heptachlor | ND |
4.82 |
 | | Heptachlor epoxide | ND |
4.82 |
 | | Methoxychlor | ND |
14.5 |
 | | Chlordane (Technical) | ND |
145 |
 | | Toxaphene (Total) | ND |
145 |
 | | Semivolatile Organic Compounds (ug/kg) | | | | | Acenaphthene | ND |
2.79 |
 | | Acenaphthylene | ND |
2.79 |
 | | Anthracene | ND |
2.79 |
 | | Benz(a)anthracene | ND |
2.79 |
 | | Benzo(a)pyrene | ND |
4.18 |
 | | Benzo(b)fluoranthene | ND |
4.18 |
 | | Benzo(k)fluoranthene | ND |
4.18 |
 | | Benzo(g,h,i)perylene | ND |
2.79 |
 | | Chrysene | ND |
2.79 |
 | | Dibenz(a,h)anthracene | ND |
2.79 |
 | | Fluoranthene | ND |
2.79 |
 | | Fluorene | ND |
2.79 |
 | | Indeno(1,2,3-cd)pyrene | ND |
2.79 |
 | | 1-Methylnaphthalene | ND |
5.57 |
 | | 2-Methylnaphthalene | ND |
5.57 |
 | | Naphthalene | ND |
5.57 |
 | | Phenanthrene | ND |
2.79 |
 | | Pyrene | ND |
2.79 |
 | | Carbazole | ND |
4.18 |
 | | Dibenzofuran | ND |
2.79 |
 | | 4-Chloro-3-methylphenol | ND |
27.9 |
 | | 2-Chlorophenol | ND |
13.9 |
 | | 2,4-Dichlorophenol | ND |
13.9 |
 | | 2,4-Dimethylphenol | ND |
13.9 |
 | | · · · · · · · · · · · · · · · · · · · | • | | | | | ı | ı | | | | |--|----|---|------|---|--| | 2,4-Dinitrophenol | ND | | 69.7 | | | | 4,6-Dinitro-2-methylphenol | ND | | 69.7 | | | | 2-Methylphenol | ND | | 6.97 | | | | 3+4-Methylphenol(s) | ND | | 6.97 | | | | 2-Nitrophenol | ND | | 27.9 | | | | 4-Nitrophenol | ND | | 27.9 | | | | Pentachlorophenol (PCP) | ND | | 5.57 | | | | Phenol | ND | | 5.57 | | | | 2,3,4,6-Tetrachlorophenol | ND | | 13.9 | | | | 2,3,5,6-Tetrachlorophenol | ND | | 14.6 | | | | 2,4,5-Trichlorophenol | ND | | 13.9 | | | | 2,4,6-Trichlorophenol | ND | | 13.9 | | | | Bis(2-ethylhexyl)phthalate | ND | | 41.8 | | | | Butyl benzyl phthalate | ND | | 27.9 | | | | Diethylphthalate | ND | | 27.9 | | | | Dimethylphthalate | ND | | 27.9 | | | | Di-n-butylphthalate | ND | | 27.9 | | | | Di-n-octyl phthalate | ND | | 27.9 | | | | N-Nitrosodimethylamine | ND | | 6.97 | | | | N-Nitroso-di-n-propylamine | ND | | 6.97 | | | | N-Nitrosodiphenylamine | ND | | 6.97 | | | | Bis(2-Chloroethoxy) methane | ND | | 6.97 | | | | Bis(2-Chloroethyl) ether | ND | | 6.97 | | | | Bis(2-Chloroisopropyl) ether | ND | | 6.97 | | | | Hexachlorobenzene | ND | | 2.79 | | | | Hexachlorobutadiene | ND | | 6.97 | | | | Hexachlorocyclopentadiene | ND | | 13.9 | | | | Hexachloroethane | ND | | 6.97 | | | | 2-Chloronaphthalene | ND | | 2.79 | | | | 1,2-Dichlorobenzene | ND | | 6.97 | | | | 1,3-Dichlorobenzene | ND | | 6.97 | | | |
1,4-Dichlorobenzene | ND | | 6.97 | | | | 1,2,4-Trichlorobenzene | ND | | 6.97 | | | | 4-Bromophenyl phenyl ether | ND | | 6.97 | | | | 4-Chlorophenyl phenyl ether | ND | | 6.97 | | | | Aniline | ND | | 13.9 | | | | 4-Chloroaniline | ND | | 6.97 | | | | 2-Nitroaniline | ND | | 55.7 | | | | 3-Nitroaniline | ND | | 55.7 | | | | 4-Nitroaniline | ND | | 55.7 | | | | Nitrobenzene | ND | | 27.9 | | | | 2,4-Dinitrotoluene | ND | | 27.9 | | | | 2,6-Dinitrotoluene | ND | | 27.9 | | | | Benzoic acid | ND | | 348 | | | | I————————————————————————————————————— | | | | • | | | Benzyl alcohol | ND | | 13.9 | | | | |---------------------------|--|----------|----------------|---------------------|---------|--| | Isophorone | ND | | 6.97 | | | | | Azobenzene (1,2-DPH) | ND | | 6.97 | | | | | Bis(2-Ethylhexyl) adipate | ND | | 69.7 | | | | | 3,3'-Dichlorobenzidine | ND | | 27.9 | | | | | 1,2-Dinitrobenzene | ND | | 69.7 | | | | | 1,3-Dinitrobenzene | ND | | 69.7 | | | | | 1,4-Dinitrobenzene | ND | | 69.7 | | | | | Pyridine | ND | | 13.9 | | | | | Total Metals (mg/kg) | | | | | | | | Arsenic | 1.02 | | 1.02 | | | | | Barium | 41.8 | | 1.02 | | | | | Cadmium | 0.234 | | 0.203 | | | | | Chromium | ND | | 4.06 | | | | | Copper | 98.2 | | 1.02 | 100/115/90.4 | | | | Lead | 2.42 | | 0.203 | | | | | Manganese | 204 | | 1.02 | | | | | Mercury | ND | | 0.0813 | | | | | Selenium | ND | | 2.03 | | | | | Silver | ND | | 0.203 | | | | | Zinc | 30.0 | | 1.60 | | | | | | | | | | | | | Notes: | | | | | | | | | * | | mation resul | | | | | | | | ds Import Cr | iteria | | | | | ND | = not de | etected | | | | | | | | | | | | | | | _ | • | sult reported by la | | | | | ** | · | | alyses have not ye | | | | | | | zinc and ma | nganese results a | copper, | | | | 1 | Results | from initial s | source of identific | ed berm | | | | ² Results from second source of identified be | | | | | | | | 3 | All beac | h backfill res | sults are from the | same so | | | OOT 1½" E
Comp | | | | | | | | | | |-------------------|----------------|--------|-------|--------|------------------------------|-------|--------|--------|-------| | | LIVINGSTON G-1 | (7 | Creek | 5) | DAYBREAK G-109
BEACH BACK | | | | | | DI | | | DI | | mposi | | DECLUT | Grab | DI | | RL | RESULT | DL | RL | RESULT | DL | RL | RESULT | DL | RL | | | 0.402 | 0.404 | 4.00 | | | | 0.200 | 0.0050 | 1.00 | | | 0.192 | 0.101 | 1.00 | | | | 0.300 | 0.0950 | 1.00 | | | ND | 0.104 | 1.00 | | | | ND | 0.0760 | 1.00 | | | ND | 0.103 | 1.00 | | | | ND | 0.0757 | 1.00 | | | ND | 0.102 | 1.00 | | | | ND | 0.108 | 1.00 | | | ND | 0.100 | 1.00 | | | | ND | 0.0891 | 1.00 | | | ND | 0.107 | 1.00 | | | | ND | 0.113 | 1.00 | | | ND | 0.105 | 1.00 | | | | ND | 0.0929 | 1.00 | | | ND | 0.106 | 1.00 | | | | ND | 0.113 | 1.00 | | | ND | 0.101 | 1.00 | | | | ND | 0.0898 | 1.00 | | | ND | 0.103 | 1.00 | | | | ND | 0.0948 | 1.00 | | | ND | 0.110 | 1.00 | | | | ND | 0.0948 | 1.00 | | | ND | 0.0949 | 1.00 | | | | ND | 0.0842 | 1.00 | | | ND | 0.108 | 1.00 | | | | ND | 0.0923 | 1.00 | | | 0.726 | 0.108 | 0.200 | | | | ND | 0.109 | 0.200 | | | 6.81 (7.20*) | 0.100 | 0.200 | | | | ND | 0.101 | 0.200 | | | 0.783 | 0.105 | 2.00 | | | | 1.45 | 0.199 | 2.00 | | | ND | 0.107 | 2.00 | | | | ND | 0.200 | 2.00 | | | 0.327 | 0.101 | 1.00 | | | | 0.564 | 0.0950 | 1.00 | | | ND | 0.104 | 1.00 | | | | 0.0901 | 0.0758 | 1.00 | | | ND | 0.106 | 1.00 | | | | 0.128 | 0.112 | 1.00 | | | ND | 0.100 | 1.00 | | | | ND | 0.0889 | 1.00 | | | ND | 0.103 | 1.00 | | | | ND | 0.0948 | 1.00 | | | ND | 0.109 | 1.00 | | | | ND | 0.0936 | 1.00 | | | 0.726 | 0.108 | 0.200 | | | | ND | 0.109 | 0.200 | | | 11.7 | 0.100 | 0.200 | | | | ND | 0.101 | 0.200 | | | | | | | | | | | | | | ND | | 10.5 | ND | | 9.96 | ND | | 10.2 | | | ND | | 10.5 | ND | | 9.96 | ND | | 10.2 | | | ND | | 10.5 | ND | | 9.96 | ND | | 10.2 | | | ND | | 10.5 | ND | | 9.96 | ND | | 10.2 | | | ND | | 10.5 | ND | | 9.96 | ND | | 10.2 | | | ND | | 10.5 | ND | | 9.96 | ND | | 10.2 | | | ND | | 10.5 | ND | | 9.96 | ND | | 10.2 | | | | | | | | 2.30 | 1,12 | | | | | ND | | 4.66 | ND | | 0.996 | ND | | 4.42 | | | ND ND | | 4.66 | ND | | 0.996 | ND | | 4.42 | | | ND ND | | 4.66 | ND | | 0.996 | ND | | 4.42 | |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |--------------|----------|----------|-----|-----------|-----|----------| |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |
ND |
4.66 | | ND |
0.996 | ND |
4.42 | |
ND |
14 | | ND |
2.99 | ND |
13.3 | |
ND |
140 | | ND |
29.9 | ND |
133 | |
ND |
140 | | ND |
29.9 | ND |
133 | | ND | 140 | | ND | 23.3 | ND | 155 | |
ND |
2.82 | | ND |
249 | ND |
2.74 | |
ND |
2.82 | | ND |
249 | ND |
2.74 | |
ND |
2.82 | | ND |
249 | ND |
2.74 | |
ND |
2.82 | | ND |
249 | ND |
2.74 | |
ND |
4.23 | | ND |
249 | ND |
4.1 | |
ND |
4.23 | | ND |
249 | ND |
4.1 | |
ND |
4.23 | | ND |
249 | ND |
4.1 | |
ND |
2.82 | | ND |
249 | ND |
2.74 | |
ND |
2.82 | | ND |
249 | ND |
2.74 | |
ND |
2.82 | | ND |
249 | ND |
2.74 | |
ND |
2.82 | | ND |
249 | ND |
2.74 | |
ND |
2.82 | | ND |
249 | ND |
2.74 | |
ND |
2.82 | | ND |
249 | ND |
2.74 | |
ND |
5.64 | | ND |
249 | ND |
5.46 | |
ND |
5.64 | | ND |
249 | ND |
5.46 | |
ND |
5.64 | | ND |
249 | ND |
5.46 | |
ND |
2.82 | | ND |
249 | ND |
2.74 | |
ND |
2.82 | | ND |
249 | ND |
2.74 | |
ND |
4.23 | | ND |
249 | ND |
4.10 | |
ND |
2.82 | | ND |
249 | ND |
2.74 | |
ND |
28.2 | | ND |
249 | ND |
27.4 | |
ND |
14.1 | \dashv | ND |
249 | ND |
13.6 | |
ND
ND |
14.1 | | ND |
249 | ND |
13.6 | | ND | 14.1 | | ND | 249 | ND | 13.6 | |
עויו |
14.1 | | טעו |
249 | טעו |
15.0 | |
ND |
70.5 | ND |
249 | ND |
68.3 | |--------------|----------|----|----------|----|----------| |
ND |
70.5 | ND |
598 | ND |
68.3 | |
ND |
7.05 | ND |
249 | ND |
6.83 | |
ND |
7.05 | ND |
249 | ND |
6.83 | |
ND |
28.2 | ND |
249 | ND |
27.4 | |
ND |
28.2 | ND |
249 | ND |
27.4 | |
ND |
28.2 | ND |
249 | ND |
27.4 | |
ND |
5.64 | ND |
249 | ND |
5.46 | | ND |
14.1 | ND |
249 | ND |
13.6 | |
ND |
14.8 | ND |
249 | ND |
14.3 | | ND |
14.1 | ND |
249 | ND |
13.6 | |
ND |
14.1 | ND |
249 | ND |
13.6 | |
ND |
42.3 | ND |
249 | ND |
41 | |
ND |
28.2 | ND |
249 | ND |
27.4 | |
ND |
28.2 | ND |
249 | ND |
27.4 | |
ND
ND |
28.2 | ND |
249 | ND |
27.4 | |
ND
ND |
28.2 | ND |
249 | ND |
27.4 | |
ND
ND |
28.2 | ND |
249 | ND |
27.4 | | ND |
7.05 | ND | 249 | ND | 6.83 | |
ND
ND | 7.05 | |
249 | |
6.83 | |
ND
ND |
7.05 | ND |
249 | ND | | |
+ |
l | ND | | ND |
6.83 | |
ND |
7.05 | ND |
249 | ND |
6.83 | |
ND |
7.05 | ND |
249 | ND |
6.83 | |
ND |
7.05 | ND |
249 | ND |
6.83 | |
ND |
2.82 | ND |
249 | ND |
2.74 | |
ND
ND |
7.05 | ND |
249 | ND |
6.83 | |
ND
ND |
14.1 | ND |
249 | ND |
13.6 | |
ND |
7.05 | ND |
249 | ND |
6.83 | |
ND
ND |
2.82 | ND |
249 | ND |
2.74 | |
ND
ND |
7.05 | ND |
249 | ND |
6.83 | |
ND |
7.05 | ND |
249 | ND |
6.83 | |
ND |
7.05 | ND |
249 | ND |
6.83 | |
ND
ND |
7.05 | ND |
249 | ND |
6.83 | |
ND |
7.05 | ND |
249 | ND |
6.83 | |
ND |
7.05 | ND |
249 | ND |
6.83 | |
ND |
14.1 | ND |
249 | ND |
13.6 | |
ND |
7.05 | ND |
249 | ND |
6.83 | |
ND |
56.4 | ND |
249 | ND |
54.6 | |
ND |
56.4 | ND |
249 | ND |
54.6 | |
ND |
56.4 | ND |
249 | ND |
54.6 | |
ND |
28.2 | ND |
249 | ND |
27.4 | |
ND |
28.2 | ND |
249 | ND |
27.4 | |
ND |
28.2 | ND |
249 | ND |
27.4 | |
ND |
352 | ND |
1250 | ND |
341 | | | | | |
 |
 | | |------|------|------------|------|-----------|--------|------------| | | ND |
14.1 | ND |
249 | ND |
13.6 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
70.5 | ND |
249 | ND |
68.3 | | | ND |
28.2 | ND |
249 | ND |
27.4 | | | ND |
70.5 | ND |
249 | ND |
68.3 | | | ND |
70.5 | ND |
249 | ND |
68.3 | | | ND |
70.5 | ND |
249 | ND |
68.3 | | | ND |
14.1 | ND |
498 | ND |
13.6 | | | | | | | | | | | 1.65 |
1.10 | ND |
1.03 | 59.0** |
1.02 | | | 59.4 |
1.10 | |
 | 74.4 |
1.02 | | | ND |
0.221 | ND |
0.206 | ND |

0.205 | | | ND |
4.42 | 3.88 |
1.03 | 9.69 |
4.09 | | 1.02 | 24.5 |
1.10 | 11.7 |
1.03 | |
 | | | 2.5 |
0.221 | ND |
1.03 | 3.47 |
0.205 | | | 210 |
1.10 | 145 |
1.03 | |
 | | | ND |
0.0884 | ND |
0.165 | ND |
0.0818 | | | ND |
2.21 | |
 | ND |
2.05 | | | ND |
0.221 | |
 | ND |
0.205 | | | 33.3 |
4.42 | 17.1 |
4.11 | |
 | was 59 mg/kg. The result from reanalysis of a second aliquot from the same sample was 4.45. Three 5-point ceived. zinc and manganese results are not on table; supplier indicates results met criteria and will be providing labora | material | | | | | | | | |----------|--|--|--|--|--|--|--| | material | | | | | | | | | urce | | | | | | | | | | BEACH BACKFILL ³ | | | | | | | | | | | | | | | |--------|---------------------------------|------------|--|--------|---------|-----|--|---------|---------|-----|--|--------|-------------------|-----|--| | BEA | REAK (ACH BA
eanalys
Grab | NCK | | | 3-S Con | ηp | | ВЕ | B-C Con | _ | | | B-N Cor
omposi | | | | RESULT | DL | RL | | | KESOET | - D- | 11. | | KESOET | D. | 112 | | IKESOET | | 11. | | KESOLI | DL | 116 |
 | |
 | |
 | |
 | | |----------|----------|--|------|--|------|--|------|---| | |
 | |
 | |
 | |
 | | | | | | | | | | | | | |
 | |
 | |
 | |
 | | | |
 | |
 | |
 | |
 | | | |
 | |
 | |
 | |
 | | | |
 | |
 | |
 | |
 | | | | | | | | | | | | | |
 | |
 | |
 | |
 | | | |
 | |
 | |
 | |
 | | | |
 | |
 | |
 | |
 | | | | | | | | | | | | | |
 | |
 | |
 | |
 | | | |
 | |
 | |
 | |
 | | | |
 | |
 | |
 | |
 | | | |
 | |
 | |
 | |
 | | | |
 | |
 | |
 | |
 | | | |
 | |
 | |
 | |
 | | | | | | | | | | | | | |
 | |
 | |
 | |
 | | | ND | 2.79 | | | | | | | | | |
2.79 | |
 | |
 | |
 | | | ND
ND |
2.79 | |
 | |
 | |
 | | | ND |
2.79 | |
 | |
 | |
 | | | ND |
4.18 | |
 | |
 | |
 | | | ND |
4.18 | |
 | |
 | |
 | | | ND |
4.18 | |
 | |
 | |
 | | | ND |
2.79 | |
 | |
 | |
 | | | ND |
2.79 | |
 | |
 | | | | | ND |
2.79 | |
 | |
 | |
 | | | ND |
2.79 | |
 | |
 | |
 | | | ND |
2.79 | |
 | |
 | |
 | | | ND |
2.79 | |
 | |
 | |
 | | | ND |
5.57 | |
 | |
 | |
 | | | ND |
5.57 | |
 | |
 | |
 | | | ND |
5.57 | |
 | |
 | |
 | | | ND |
2.79 | |
 | |
 | |
 | | | ND |
2.79 | |
 | |
 | |
 | | | ND |
4.18 | |
 | |
 | |
 | | | ND |
2.79 | |
 | |
 | |
 | | | ND |
27.9 | |
 | |
 | |
 | | | ND |
13.9 | |
 | |
 | |
 | | | ND |
13.9 | |
 | |
 | |
 | | | ND |
13.9 | |
 | |
 | |
 | | | טאו |
13.5 | |
 | |
 | |
 | Щ | | ND |
69.7 |
 | |
 | |
 |
П | |----------|----------|------|-------|------|--|------|--------------| | ND |
69.7 |
 | |
 | |
 |
H | | ND |
69.7 |
 | |
 | |
 | | | ND |
69.7 |
 | |
 | |
 |
H | | ND |
27.9 |
 | |
 | |
 |
\vdash | | ND |
27.9 |
 | |
 | |
 | | | ND |
27.9 |
 | |
 | |
 | | | ND |
5.57 |
 | |
 | |
 | | | ND |
13.9 |
 | |
 | |
 |
H | | ND |
14.6 |
 | |
 | |
 | | | ND |
13.6 |
 | |
 | |
 |
H | | ND |
13.6 | | | | | | Н | | ND |
41.8 | | |
 | |
 |
\vdash | | ND | 27.9 |
 | |
 | |
 |
\vdash | | |
27.9 |
 | |
 | |
 |
\vdash | | ND
ND |
27.9 |
 | |
 | |
 |
Н | | ND |
27.9 |
 | |
 | |
 |
\vdash | | | |
 | |
 | |
 |
\vdash | | ND |
27.9 |
 | |
 | |
 |
\vdash | | ND |
6.97 |
 | |
 | |
 |
\vdash | | ND |
6.97 |
 | |
 | |
 |
+ | | ND |
6.97 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 |
+ | | ND |
6.97 |
 | |
 | |
 |
+ | | ND |
6.97 |
 | |
 | |
 |
+ | | ND |
2.79 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 |
- | | ND |
13.9 |
 | |
 | |
 |
\vdash | | ND |
6.97 |
 | |
 | |
 | | | ND |
2.79 |
 | |
 | |
 |
- | | ND |
6.97 |
 | |
 | |
 |
\vdash | | ND |
6.97 |
 | |
 | |
 |
\vdash | | ND |
6.97 |
 | |
 | |
 |
Н | | ND |
6.97 |
 |
_ |
 | |
 |
Щ | | ND |
6.97 |
 | |
 | |
 |
Щ | | ND |
6.97 |
 | |
 | |
 |
Щ | | ND |
13.9 |
 |
 |
 | |
 |
Щ | | ND |
6.97 |
 | |
 | |
 |
Щ | | ND |
54.6 |
 | |
 | |
 |
Щ | | ND |
55.7 |
 |
 |
 | |
 |
Щ | | ND |
55.7 |
 | |
 | |
 |
Щ | | ND |
27.9 |
 | |
 | |
 | | | ND |
27.9 |
 |
 |
 | |
 |
Щ | | ND |
27.9 |
 |
 |
 | |
 |
Ш | | ND |
348 |
 | |
 | |
 |
Щ | | | | , | | | | | г — | 1 | | 1 | | | | ı | _ | |----------|---------|------------|-------|----------|---------|----------|-----|-----------|---------|------------|-----|----------|---------|---------|-----| | ND | | 13.9 | | | | | | | | | | | | | | | ND | | 6.97 | | | | | | | | | | | | | | | ND | | 6.97 | | | | | | | | | | | | | | | ND | | 6.97 | | | | | | | | | | | | | | | ND | | 27.9 | | | | | | | - | | | | | | | | ND | | 69.7 | | | | | | | | | | | | | | | ND | | 69.7 | | | | | | | 1 | | | | | | | | ND | | 69.7 | | | | | | | | | | | | | | | ND | | 13.9 | 4.45** | | 1.02 | | 4.29 | | 1.02 | | 4.43 | | 1.04 | | 4.46 | | 1.10 | | | 38.2 | | 1.02 | | | | | | | | | | | | | | | ND | | 0.205 | | | | | | | 1 | | | | | | | | 9.51 | | 4.09 | 3.28 | | 0.205 | 1 | | | | | | | | ND | | 0.0818 | | | | | | | 1 | | | | | | | | ND | | 2.05 | | | | | | | 1 | | | | | | | | ND | | 0.205 | | | | | | | 1 | | | | | | | | | | | | | | | | | 1 | compos | ite san | nples were | e the | en colle | cted fr | om the r | nat | erial and | the res | sulting ar | sen | ic conce | ntratio | ns were | 4.2 | | tory rep | ort | | | | | | | | | | | | | | | | | | I | 1 | | | | | | 1 | | | | 1 | | 1 | | | | | | i | | | | | |--------|---------|------|-----------------|---|------|--| Total C | | Import Criteria | | | | | | ompos | | | | | | | RESULT | DL | RL | | | | | | | | | | | | | | | | | 2.5 | | | | | | | | 2.5 | | | | | | | | 2.5 | | | | | | | | 2.5 | | | | | | | | 2.5 | | | | | | | | 2.5 | | | | | | | | 2.5 | | | | | | | | 2.5 | | | | | | | | 2.5 | | | | | | | | 2.5 | | | | | | | | 2.5 | | | | | | | | 2.5 | | | | | | | | 2.5 | | | | | | | | 0.5 | | | | | | | | 0.5 | | | | | | | | 5 | | | | | | | | 5 | ND | | 0.10 | 10 | | | | | ND | | 9.19 | 10 | | | | | ND | | 9.19 | 10 | | | | | ND | | 9.19 | 10 | - | | | | ND | | 9.19 | 10 | | | | | ND | | 9.19 | 10 | _ | | | | ND | | 9.19 | 10 | _ | | | | ND | | 9.19 | 10 | | | | | | | | | | | | | ND | | 1.8 | 5 | | | | | ND | | 1.8 | 5 | | | | | ND | | 1.8 | 5 | |
 | | | ND |
1.8 | 5 | | | | |----|----------|-------|------|--|--| | ND |
1.8 | 5 | | | | | ND |
1.8 | 100 | | | | | ND |
1.8 | 100 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | |
 | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
5.41 | 5 | | | | | ND |
54.1 | | | | | | ND |
54.1 | 250 | | | | | | | | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
3.97 | 330 | | | | | ND |
3.97 | | | | | | ND |
3.97 | | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
5.29 | 10000 | | | | | ND |
5.29 | |
 | | | | ND |
5.29 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
3.97 | |
 | | | | ND |
2.65 | 330 |
 | | | | ND |
26.5 | | | | | | ND |
13.2 | | | | | | ND |
13.2 | | | | | | ND |
13.2 | 330 | | | | | ND |
66.2 | | | | | |----------|----------|------|--|--|--| | ND |
66.2 | | | | | | ND |
6.62 | 330 | | | | | ND |
6.62 | 330 | | | | | ND |
26.5 | | | | | | ND |
26.5 | 2000 | | | | | ND |
26.5 | | | | | | ND |
5.29 | 330 | | | | | ND |
13.2 | | | | | | ND |
13.2 | | | | | | ND |
13.2 | | | | | | ND |
13.2 | | | | | | ND |
39.7 | 330 | | | | | ND |
26.5 | 330 | | | | | ND |
26.5 | 330 | | | | | ND
ND |
26.5 | 330 | | | | | ND
ND |
26.5 | 330 | | | | | ND |
26.5 | 330 | | | | | ND |
6.62 | | | | | | ND | 6.62 | | | | | | ND |
6.62 | 220 | | | | | _ | | 330 | | | | | ND |
6.62 | | | | | | ND |
6.62 | | | | | | ND |
6.62 | 220 | | | | | ND |
2.65 | 330 | | | | | ND |
6.62 | 330 | | | | | ND |
13.2 | 220 | | | | | ND |
6.62 | 330 | | | | | ND |
2.65 | | | | | | ND |
6.62 | 330 | | | | | ND |
6.62 | 330 | | | | | ND |
6.62 | 330 | | | | | ND |
6.62 | 330 | | | | | ND |
6.62 | | | | | | ND |
6.62 | | | | | | ND |
13.2 | | | | | | ND |
6.62 | | | | | | ND |
52.9 | | | | | | ND |
52.9 | | | | | | ND |
52.9 | | | | | | ND |
26.5 | | | | | | ND |
26.5 | | | | | | ND |
26.5 | | | | | | ND |
330 | 2000 | | | | | | | | | | |
 | |-----------|---------|-----------|------------------------|----------|--|------| | ND | | 13.2 | 330 | | | | | ND | | 6.62 | | | | | | ND | | 6.62 | | | | | | ND | | 66.2 | | | | | | ND | | 26.5 | | | | | | ND | | 66.2 | | | | | | ND | | 66.2 | | | | | | ND | | 66.2 | | | | | | ND | | 13.2 | | | | | | | | | | | | | | 3.91 | | 1.10 | 8.8 | | | | | | | | | | | | | ND | | 0.22 | 0.63 | | | | | 8.59 | | 1.1 | 76 | | | | | 25.2 | | 2.20 | 34 | | | | | 3.36 | | 0.22 | 79 | | | | | 323 | | 1.10 | 1800 | | | | | ND | | 0.0881 | 0.23 | 28.9 | | 4.40 | 180 | , 4.43 an | ıd 4.46 | mg/kg. La | aboratory reports from | <u> </u> | | | | | T | Г | T | | | T | | |---|---|---|---|---|---|---|--| - | | | | - | - | • | | | • | | |----------|---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | <u> </u> | | | | | | | | | | | | | | I |
 | | | | | | | | |------|---|---|---|---|---|---|--|
 | _ | _ | _ | _ | _ | _ | | | | • | | | • | | |----------|---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | <u> </u> | | | | | | | | | | | | | | I | • | | | • | | |----------|---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | <u> </u> | | | | | | | | | | | | | | I | T | Г | T | | T | | |--|---|---|---|------|---|--|
 | • | | | • | | |----------|---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | <u> </u> | | | | | | | | | | | | | | I | • | | | • | | |----------|---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | | | | | | | | | | | | | |
 | <u> </u> | | | | | | | | | | | | | | I | T | Г | T | | | T | | |---|---|---|---|---|---|---|--| - | | | | - | - | • | | | • | | |----------|---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | <u> </u> | | | | | | | | | | | | | | I |
 | | | | | | | | |------|---|---|---|---|---|---|--|
 | _ | _ | _ | _ | _ | _ | | | | | • | | • | | |---|------|---|----------|---|------|
 | | | |
 | <u> </u> | 1 | | | | | | | | | • | | • | | |---|------|---|----------|---|------|
 | | | |
 | <u> </u> | 1 | | | | | | | | | • | | • | | |---|------|---|----------|---|------|
 | | | |
 | | |
 | <u> </u> | 1 | | | | | | | | | • | | • | | |---|------|---|----------|---|------|
 | | | |
 | <u> </u> | 1 | | | | | | |
 | | |------|--|